Implicit Differentiation Homework

1.

Consider the curve given by $x^2 + 4y^2 = 7 + 3xy$.

- (a) Show that $\frac{dy}{dx} = \frac{3y 2x}{8y 3x}$.
- (b) Show that there is a point P with x-coordinate 3 at which the line tangent to the curve at P is horizontal. Find the y-coordinate of P.
- (c) Find the value of $\frac{d^2y}{dx^2}$ at the point P found in part (b). Does the curve have a local maximum, a local minimum, or neither at the point P? Justify your answer.

2.

Consider the curve defined by $-8x^2 + 5xy + y^3 = -149$.

- (a) Find $\frac{dy}{dx}$.
- (b) Write an equation for the line tangent to the curve at the point (4,−1).
- (c) There is a number k so that the point (4.2,k) is on the curve. Using the tangent line found in part (b), approximate the value of k.
- (d) Write an equation that can be solved to find the actual value of k so that the point (4.2,k) is on the curve.
- (e) Solve the equation found in part (d) for the value of k.